KURZMELDUNG
Weniger Fehlalarme auf der Intensivstation – durch Big Data
Die Patientensicherheit auf der Intensivstation könnte entscheidend verbessert werden, wenn sich Fehlalarme stark reduzieren und kritische Komplikationen wie epileptische Krampfanfälle vorhersagen liessen. Hier setzt das Projekt «ICU-Cockpit» des Nationalen Forschungsprogramms «Big Data» (NFP 75) an: Die grossen Datenmengen aus der Intensivmedizin werden genutzt, um Verfahren für Frühwarnsysteme und therapeutische Empfehlungen zu entwickeln.
Ein einziger kritischer Patient, der auf einer Intensiv- oder Notfallstation behandelt wird, generiert bis zu 100 GB Daten pro Tag. Die Daten stammen aus der Überwachung der Patienten, aber auch Untersuchungen wie Computer- und Magnetresonanz-Tomographien des Gehirns, Laborwerte und Biosensoren liefern viele Daten. Die Informationsflut kann oft nicht für die rechtzeitige Erkennung von Risikokonstellationen und zur raschen Entscheidungsfindung genutzt werden.
Weniger Fehlalarme – bessere Patientensicherheit
Herkömmliche Monitoring-Systeme lösen pro Patient und Tag rund 700 Alarme aus, also rund einen Alarm alle zwei Minuten. Ein beträchtlicher Teil davon sind Fehlalarme. Liesse sich die Zahl der Fehlalarme markant reduzieren, wäre die Datenmenge viel kleiner, was das Erkennen von kritischen Situationen erleichtern und damit die Patientensicherheit erhöhen würde. Daran arbeiten die Neurochirurgische Intensivstation des Universitätsspitals Zürich, die ETH Zürich und IBM Research im Projekt «ICU-Cockpit». Projektleiterin Emanuela Keller umschreibt das langfristige Ziel: «Wir möchten mit dem Projekt eine grundlegende Entwicklung in der Notfall- und Intensivmedizin anstossen – und damit die Arbeitsweise im Klinikalltag wesentlich verbessern.»
Warnung vor kritischen Ereignissen
Für das Projekt konnten bei mehr als 400 Patientinnen und Patienten systematisch Daten aus verschiedenen Quellen gesammelt werden. Zudem wurden Videoaufnahmen eingesetzt. Alle Daten wurden vor der Weiterverarbeitung anonymisiert. Patientinnen und Patienten auf der Intensivstation sind in verschiedener Hinsicht sehr verletzlich, sodass deren Daten besonders schützenswert sind. Aus den Daten haben die Forschenden Verfahren für drei Anwendungsfälle entwickelt: erstens für das Ausfiltern von Fehlalarmen, zweitens für die Früherkennung epileptischer Krampfanfälle, drittens für die Früherkennung sekundärer Hirnschädigungen.
Die beiden letztgenannten Verfahren sollen zur Erkennung von Risikokonstellationen führen und vor drohenden kritischen Ereignissen warnen, im Sinne einer Prognostik. Dadurch kann früher therapeutisch eingegriffen werden, was die Behandlungsqualität verbessert.
Heute werden Therapieentscheide oft empirisch gefällt, basierend auf den Erfahrungen und dem Wissen der Beteiligten. Wünschenswert wäre es, die Entscheide durch in Echtzeit verfügbare eigene Datenanalysen sowie aktuellstes medizinisches Wissen aus weiteren Quellen, zum Beispiel globalen harmonisierten Datenbanken, zu untermauern. Das Projekt zeigt, wie dies möglich wird.
Visuell darstellen – Risiken automatisch erkennen
Die Verfahren sollen noch mit weiteren Datensätzen geprüft und anschliessend im Rahmen einer nächsten Studie im Klinikalltag des Universitätsspitals Zürich direkt umgesetzt werden. Auf der Intensivstation bei den Patienten sollen die Erkenntnisse aus der Datenanalyse visuell dargestellt und damit Risikokonstellationen automatisch erkannt werden. Zudem sollen die Arbeiten mit IBM Research weitergeführt werden, bei denen Videoüberwachung für die Erkennung epileptischer Krampfanfälle und weiterer neurologischer Krankheitsbilder genutzt werden. Diese Verfahren basierend auf Videoaufnahmen sind aus Sicht der Forschenden auch interessant für Schlaganfallpatienten mit einer Lähmung, um diese besser zu überwachen.